Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38546748

RESUMO

Sepsis is a life-threatening condition characterized by a systemic inflammatory response to infection. Despite extensive research on its pathophysiology, effective therapeutic approaches remain a challenge. This study investigated the potential of resveratrol (RV) and silver nanoparticle-enhanced resveratrol (AgNP-RV) as treatments for sepsis-induced lung injury using a rat model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The study focused on evaluating changes in oxidative status (TAS, TOS, and OSI) and the expression of inflammatory and apoptotic markers (IL-1ß, TNF-α, P2X7R, TLR4, Caspase-3, and Bcl-2) in lung tissue. Both RV and AgNP-RV demonstrated potential in mitigating oxidative stress, inflammation, and apoptosis, with AgNP-RV exhibiting greater efficacy than RV alone (p < 0.05). These findings were corroborated by histopathological analyses, which revealed reduced tissue damage in the RV- and AgNP-RV-treated groups. Our study highlights the therapeutic potential of RV and, particularly, AgNP-RV in combating sepsis-induced oxidative stress, inflammation, and apoptosis. It also underscores the promise of nanoparticle technology in enhancing therapeutic outcomes. However, further investigations are warranted to fully understand the mechanisms of action, especially concerning the role of the P2X7 receptor in the observed effects. Nonetheless, our research suggests that RV and AgNP-RV hold promise as novel strategies for sepsis management.

3.
Shock ; 60(5): 688-697, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695728

RESUMO

ABSTRACT: Sepsis-induced acute liver injury is a life-threatening condition involving inflammation, oxidative stress, and endothelial dysfunction. In the present study, the preventive effects of resveratrol (RV) alone and RV-loaded silver nanoparticles (AgNPs + RV) against sepsis-induced damage were investigated and compared in a rat model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Rats were divided into four groups: Sham, CLP, RV, and AgNPs + RV. Pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, presepsin, procalcitonin (PCT), 8-hydroxy-2'-deoxyguanosine (8-OHDG), vascular endothelial growth factor (VEGF), and sirtuin-1 (SIRT1) levels were assessed to determine the treatments' effects. AgNPs + RV treatment significantly reduced pro-inflammatory cytokines, NF-κB activation, presepsin, PCT, 8-OHDG, and VEGF levels compared with the CLP group, indicating attenuation of sepsis-induced liver injury. Both RV and AgNPs + RV treatments increased SIRT1 levels, suggesting a potential role of SIRT1 activation in mediating the protective effects. In conclusion, AgNPs + RV treatment demonstrated extremely enhanced efficacy in alleviating sepsis-induced liver injury by modulating inflammation, oxidative stress, and endothelial dysfunction, potentially mediated through SIRT1 activation. In this study, the effect of AgNPs + RV on sepsis was evaluated for the first time, and these findings highlight AgNPs + RV as a promising therapeutic strategy for managing sepsis-induced liver injury, warranting further investigation.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Nanopartículas Metálicas , Sepse , Animais , Ratos , Citocinas/metabolismo , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo , Estresse Oxidativo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Prata , Sirtuína 1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
J Fluoresc ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37439920

RESUMO

Colorectal cancer (CRC) is a leading cause of morbidity and death worldwide. As current cancer drugs are ineffective, new solutions are being sought in other fields, including nanoscience. Similarly, silver nanoparticles play an important role in the pharmaceutical industry as they act as anti-cancer agents with less harmful effects and are usually 1 to 100 nm in size. Selenic acid (SA) and pyruvic acid (PA) are involved in various metabolic pathways in cancer. For this reason, we decided to detect their influence on colorectal cancer using silver-based (Ag) nanocarriers. DLS, Zetasizer, SEM and UV-Vis analyses were used to characterize AgSA and AgPA. A UV spectrophotometer was used to analyze the release of the NPs. MTT analyses were used to measure the viability of HCT116 and HUVEC cells, and IC50 values were calculated using GraphPad Prism. The indicated dosage and particle size of AgSA NPs proved to be suitable for cytotoxicity. Moreover, injection of these nanoparticles into non-cancer cells proved safe due to their minimal toxicity. In contrast, the AgPA NPs have no cytotoxicity and induce proliferation of HCT116 cells. Finally, only the synthesised AgSA nanoparticles could be used for advanced cancer therapy, which is both inexpensive and has minimal side effects.

5.
J Fluoresc ; 33(3): 1227-1236, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36811696

RESUMO

Recently, nanocarriers have been made to eliminate the disadvantages of chemotherapeutic agents by nanocarriers. Nanocarriers show their efficacy through their targeted and controlled release. In this study, 5-fluorouracil (5FU) was loaded into ruthenium (Ru)-based nanocarrier (5FU-RuNPs) for the first time to eliminate the disadvantages of 5FU, and its cytotoxic and apoptotic effects on HCT116 colorectal cancer cells were compared with free 5FU. 5FU-RuNPs with a size of approximately 100 nm showed a 2.61-fold higher cytotoxic effect compared to free 5FU. Apoptotic cells were detected by Hoechst/propidium iodide double staining, and the expression levels of BAX/Bcl-2 and p53 proteins, in which apoptosis occurred intrinsically, were revealed. In addition, 5FU-RuNPs was also found to reduce multidrug resistance (MDR) according to BCRP/ABCG2 gene expression levels. When all the results were evaluated, the fact that Ru-based nanocarriers alone did not cause cytotoxicity proved that they were ideal nanocarriers. Moreover, 5FU-RuNPs did not show any significant effect on the cell viability of normal human epithelial cell lines BEAS-2B. Consequently, the 5FU-RuNPs synthesized for the first time may be ideal candidates for cancer treatment because they can minimize the potential drawbacks of free 5FU.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Rutênio , Humanos , Rutênio/farmacologia , Rutênio/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/farmacologia , Proteínas de Neoplasias/uso terapêutico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Células HCT116 , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Linhagem Celular Tumoral
6.
Chemosphere ; 315: 137758, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610513

RESUMO

This paper reports the electrochemical oxidation treatment of 80 mL of acidic aqueous solutions with 0.2 mM of the drug tetracycline in 25 mM Na2SO4 using a lab-scale electrochemical cell. The performance of tetracycline removal with Ru-coated graphite by the chemical bath deposition (CBD) and raw graphite anode has been demonstrated. The effects of operating parameters were tested such as pH, applied current, supporting electrolyte concentration, and initial tetracycline concentration. The best tetracycline degradation was obtained with Ru-coated graphite anode due to its higher oxidation power, which allowed the complete degradation of refractory compounds. The modified surface structure of the Ru-coated graphite anode was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy-dispersive X-ray (EDX). The EO process with Ru-coated graphite anode allowed 93.8% tetracycline abatement after 100 min of electrolysis at an applied current of 100 mA. In all cases, tetracycline decay obeyed pseudo-first-order kinetics. The tetracycline removal performance of graphite electrodes with nano coating on graphite has offered a performing alternative. A Comparative study revealed that electrolysis with Ru-coated graphite acted as a better electrode material than raw graphite for the catalytic reaction.


Assuntos
Grafite , Rutênio , Poluentes Químicos da Água , Grafite/química , Antibacterianos , Oxirredução , Tetraciclina , Água , Eletrodos , Poluentes Químicos da Água/análise
7.
Sci Rep ; 12(1): 12862, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896810

RESUMO

In this study, the material obtained from the sonication of the double-walled carbon nanotube and ruthenium chloride was produced as an aerogel. Then, symmetrical supercapacitor devices were made using them, and their electrochemical properties were investigated. XRD and FTIR were used in the structural analysis of the aerogel, STEM in surface images, and elemental analyses in EDX. Electrochemical analysis was performed by galvanostat/potentiostat. From the cyclic voltammetry analysis, the highest specific capacitance for MWCNT/Ruthenium hydroxide aerogels was achieved as 423 F/g at 5 mV/s. On the other hand, the corresponding values calculated from the charge-discharge curves were found to be 420.3 F/g and 319.9 F/g at the current densities of 0.5 A/g and 10.0 A/g, respectively. The capacitance retention of as-synthesized aerogel was 96.38% at the end of the 5000 consecutive consecutive cyclic voltammetry cycles.

8.
Toxicol In Vitro ; 84: 105435, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35817265

RESUMO

In this study, as a new synthesis method, UV light was employed as a type of cross-linking agent to control drug storage and to produce nanoparticles of different sizes and to stabilize the nanoparticles for the first time. We showed that the exposure time of the 5FU albumin solution to UV light produces differences in the size and characterization of the nanoparticles and also produces different cytotoxic effects on MCF-7 breast cancer cells. While the 5FU-A1 nanoparticles we synthesized with 1 h UV storage were approximately 43 nm, the 5FU-A2 nanoparticles we synthesized with UV storage for 3 h increased to an average of 300 nm. 5FU-A1 (IC50 value: 2.5 µg/mL) was approximately 16 times more cytotoxic than free 5FU (IC50 value 39.39 µg/mL) on MCF-7 cancer cells. Moreover, when normal HUVEC cells are treated with 5FU-A1 at a concentration of 2.5 µg/mL, more than 80% of these normal cells remain viable. In addition, we examined the rate of early-to-late apoptosis and necrosis in MCF-7 cancer cells using the Annexin V/PI flow cytometry assay. According to our results, 5FU-A1 promoted the apoptosis pathway. Finally, we examined P-gp activity with MDR1/ABCB1 antibody by flow cytometry and Rhodamine123 with fluorescent dye.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Albuminas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias da Mama/tratamento farmacológico , Feminino , Fluoruracila/farmacologia , Humanos , Células MCF-7 , Raios Ultravioleta
9.
Sci Rep ; 12(1): 10686, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739313

RESUMO

Carboplatin (CP), a platinum analog, is one of the most widely used chemotherapeutic agents in the treatment of colorectal cancer. Although platinum-based drugs are quite effective in anticancer treatments, their use in a wide spectrum and effective treatment possibilities are limited due to their systemic side effects and drug resistance development. In recent years, studies have focused on increasing the therapeutic efficacy of platinum-based drugs with drug delivery systems. Gelatin, a protein, obtained by the hydrolysis of collagen, is a biocompatible and biodegradable material that can be used in nano drug delivery systems. In this study, CP-loaded gelatin-based NPs (CP-NPs) were exposed to IR light in different temperatures at 30, 35, 40, 45, and 50 °C and characterized by FESEM-EDX, FTIR, UV-Vis, DLS. Accordingly, we synthesized gelatin-based CP-NPs of different sizes between 10-290 nm by exposure to IR. We found that CP-NPs-50, 16 nm nano-sized, obtained at 50 °C had the most cytotoxicity and was 2.2 times more effective than the free drug in HCT 116 colon cancer cells. Moreover, we showed that the cytotoxicity of CP-NPs-50 in normal HUVEC cells was lower. Additionally, we demonstrated that CP-NPs enhanced apoptotic activity while not developing MDR1-related resistance in colon cancer cells. In this study, for the first time drug loaded gelatin-based nanoparticles were synthesized in different sizes with a newly self-assembly method by exposing them to infrared light at different temperatures and their anticancer effects were evaluated subsequently.


Assuntos
Antineoplásicos , Neoplasias do Colo , Nanopartículas , Antineoplásicos/farmacologia , Carboplatina/farmacologia , Neoplasias do Colo/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Gelatina , Humanos
10.
Talanta ; 225: 121982, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592730

RESUMO

A sensitive and selective, aptamer and spectroscopic ellipsometry based sensor is reported here for the early diagnosis of breast cancer, which is a common type of cancer following lung cancer. It was aimed to develop a single-step and label-free assay for the sensitive and selective detection of VEGF165. To this end, two different aptamers and spectroscopic ellipsometry were used. In the presented study, by determining the appropriate aptamer immobilization conditions, the spectroscopic ellipsometry technique was successfully applied for the detection of VEGF165 at the range of 1 pM-1000 pM in the buffer. Aptasensors have a detection limit of 5.81 pM and 4.29 pM, respectively.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Neoplasias , Humanos , Limite de Detecção , Espectrofotometria , Fator A de Crescimento do Endotélio Vascular
11.
Toxicol In Vitro ; 61: 104600, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31302208

RESUMO

This study aimed to evaluate antiproliferative and proapoptotic effects of Capecitabine bonded silver particles on human breast cancer cells (MCF-7). Different sizes of Ag NPs (in sizes 5, 10, 15, 30 nm) were synthesized. The characterization of silver and drug-bonded silver nanoparticles was performed through UV-VIS, FTIR, and SEM analysis. Silver and drug-bonded silver nanoparticles were measured by zetasizer. Antiproliferative and proapoptotic effects of capecitabine, silver and drug-bonded silver nanoparticles were evaluated using XTT, Anneksin V, respectively. According to the results, silver nanoparticles of 10 nm size have shown the lowest toxic effect. Drug-bonded nanoparticles significantly increased the number of early and late apoptotic cells on MCF-7 cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Capecitabina/farmacologia , Nanopartículas Metálicas , Prata/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Capecitabina/química , Proliferação de Células/efeitos dos fármacos , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...